A career in science requires one to wear many hats:  bench scientist, mentor, writer, teacher, graphic designer, public speaker, etc. Therefore, effective time management is essential for a successful career in research. In a recent career column in Nature, Andrew Johnson and John Sumpter outline six tips at being a better manager of your time.

Six easy ways to manage your time better

Article taken from: http://www.sciencemag.org/careers/2018/09/surprises-starting-new-pi

By: Elisabeth Pain

Late one night, cell biologist Prachee Avasthi was poring over data that had come in earlier that day, when she came across a result she describes as “exceedingly rare and unfathomable”: A gene that her lab was already investigating was a key player in another cellular process they had recently become interested in. “I tried but couldn’t contain my excitement,” says Avasthi, a principal investigator (PI) at the University of Kansas Medical Center in Kansas City. So she posted about it on Slack, the electronic communication and collaboration tool her team uses. Even though she didn’t expect anyone to see it at that late hour, she was just happy to convey her excitement there, knowing that she and her lab members would “share some happy moments of awe and disbelief the next day.”

This lab community, however, was a few years in the making. When Avasthi started out as an assistant professor in 2015, she was surprised at how isolating the position could feel. As a trainee, “you are in somebody’s lab, and you have a cohort of other classmates, and more importantly you have that adviser who, if you make a big discovery or thought of a great new idea, is someone that you can tell that is as excited about it as you are,” she says. But when you become a PI, all of a sudden, “that vanishes.” Back in her early days as a PI, there were many times when she was “bursting with excitement,” only to wonder, “Who do I tell?” (In 2016, this question prompted Avasthi to create a Slack community of new PIs that now has more than 950 members from around the world.)

Many new PIs experience similarly unexpected bumps in the road as they transition from trainee to head honcho. The features of the job that many aspiring academics look forward to—such as having the freedom to pursue your own ideas, running your lab how you want, and gaining more recognition—come with new responsibilities and challenges, including some that are unforeseen. To address this gap, both for new PIs and for trainees who are considering whether they want to pursue the PI path, Science Careers talked with Avasthi and three other scientists about the unexpected challenges of starting their labs and what they learned along the way.

Taking—and ceding—control

“You have this idea that once you are the boss, you can do what you want and whenever you want,” Avasthi recalls thinking when she was a trainee. But once she started her new role as a PI, she quickly found that was not quite the case. Between her current teaching responsibilities, meetings, and other commitments, “this is the least amount of control over my schedule that I’ve ever had,” Avasthi says. One of her coping strategies is working from home when she needs to really focus on digging into some new data or writing a paper or grant application.

The responsibility that comes with authority also informs her approach to managing her research program. As a postdoc, “if I had an idea in my head and I was beyond excited, I could just drop everything and do it,” she says. But as a PI, she has to think carefully about reprioritizing experiments. “You don’t want to hijack people in their productivity by changing gears all the time,” she says. You have to “take into account how much pressure you are putting on people and let them have a chance to decide for themselves.”

That mindset has also helped her deal with the “huge amount of decision fatigue” that comes with having “one million decisions [all] waiting on you”—another aspect of the job that Avasthi hadn’t anticipated as a trainee. She has learned to rely more and more on her trainees to make minor decisions for the lab, such as choosing what reagents to order, which allows her to “spend my time doing things that only I can do,” such as writing major grant proposals.

In becoming a PI, “there are certain things that were different” from what she expected, Avasthi says. But they aren’t all challenges. All in all, she says, being a PI “has been even better than I hoped.”

Managing management

When systems biologist Johannes Jaeger started as a PI at the Centre for Genomic Regulation in Barcelona, Spain, he was all about the science. “I was extremely excited to be able to do my own stuff with so many resources,” he recalls. But, he continues, “I was completely unprepared in terms of how to manage a group.”

Early on, Jaeger made a few management decisions that he would come to regret. In one case, he hired a trainee based on their technical expertise, even though he had some misgivings about whether they would be a good match for his personality and advising style. He thought that the trainee’s knowledge would outweigh the “fit” factor. And the researcher did help push the lab forward—but they also proved difficult to work with and disruptive to the lab, Jaeger says. The lesson, he says, is that when it comes to hiring lab members, CVs can’t tell the whole story.

With time, Jaeger realized that not only was he unprepared for the managerial aspects of running a multidisciplinary lab—such as getting researchers with different backgrounds to collaborate and understand each other; overseeing the budget; and making sure that reagents for experiments were ordered, scientific equipment was maintained, and computational infrastructure was kept up-to-date—he didn’t enjoy being completely absorbed by them. Rather than feeling like he was doing research, it felt “almost like leading a small company,” he says, which wasn’t what he wanted. He missed having the chunks of time that he once enjoyed as a postdoc to do his own research, think, and write.

Hand-in-hand with the managerial responsibilities came the pressure to succeed, which Jaeger initially found difficult to cope with. Some of this pressure was self-imposed, with Jaeger setting research targets that he describes as overly ambitious and “unnecessarily scary.” But his high-risk project took almost 4 years to yield publications, which made getting grants difficult. Those were frustrating times, Jaeger adds. “I was worrying a lot.”

One year after passing his 5-year evaluation, Jaeger decided to close his lab to become the scientific director of a small institute in Austria. He is currently writing a book and teaching while considering his next career steps. His advice to new PIs who envision a traditional academic career is “to trust yourself and to let yourself grow into the role. It’s not that your life completely changes and you suddenly have to be on top of everything. You have some spare space and time to learn on the job, and that’s the only way you can do it.”

Facing greater exposure

For physicist Martina Müller, who runs a lab at the Jülich Research Center in Germany, the sense of exposure that can come with being a PI took her by surprise. “As a postdoc, you are responsible for yourself and maybe one or two students, but there is always a professor taking care of the final things,” she says. “And then from one day to the other, you are responsible for other people, money, teaching students, and so on,” says Müller, who also holds a junior professor position at the Technical University of Dortmund.

At times, being the one in charge forces you to be the bad guy when you have to make decisions “that are maybe not so popular” with your trainees, says Müller, who tries to cultivate a flat, nonhierarchical structure in her lab to the extent that she can. Earlier this year, for example, she had to tell a student that they needed to delay taking their summer vacation because the trainee’s holiday plans clashed with a coveted slot they had secured at a synchrotron facility.

It’s not just within the lab. PIs need to be ready to step up and defend their ideas and positions to colleagues and higher-ranking professors, within their institute and beyond, Müller says. This “costs energy, and if you are not completely an alpha person, this is something that you have to work on.”

What Müller expected least was the sense of exposure that she came to experience as a woman in a male-dominated working environment. As an early-career physicist, she had become accustomed to being in the minority, but she had never really felt set apart or experienced potential bias against her. Now, in meetings, she is all too often the only woman in the room, which brings a peculiar sort of visibility. “The focus is at some point on you, and you have to sit very straight” and be impeccable professionally, “and this also costs a bit of energy,” Müller says. Often, she also feels the need to show greater competence and say things more forcefully than her male colleagues to be treated equally. “I had not foreseen really how it feels to stand up or to be in many situations alone as a female.”

It helped that, as she started her position, Müller participated in a 2-year leadership training program for women in science. Even more useful has been developing a network of peers at her same career stage. “You cannot talk to your boss or students about certain topics,” such as work overload, conflicts with and between trainees, or gender issues, she says. The network offers the outlet she needs to talk about these issues with other young PIs who are experiencing similar problems. These conversations help her find the support and advice she needs to stand up for herself and manage the challenges.

Achieving balance

For microbiologist James “Jake” McKinlay, one of the biggest surprises when he started as a professor in 2011 was how challenging teaching—and the time management that comes with it—can be. His assistant professorship at Indiana University in Bloomington called for him to spend 25% of his time teaching, with the remaining 75% committed to research. He thought this would be a good balance for him—it was one of the reasons he took the job in the first place.

But the undergraduate course that he was assigned to teach during his first year soon became all-consuming. “I wanted my course to be really special,” McKinlay recalls, so he gave his students all kinds of projects and homework. “I don’t think I realized how much time it would take just to put together a basic lecture. … I tried to do too much too early.” Preparing the material for the course and grading the assignments left little time for research. “My research program all but stopped that semester, and that was really bad.”

The experience eventually forced McKinlay to dedicate specific blocks of time for his research and set more realistic standards for his teaching. By his third year, when he taught his first graduate course, “I was more willing to ease myself into it,” he says, which made both his teaching and research more enjoyable and effective.

The same time management challenge kept presenting itself in many forms. As a professor, you get daily requests to help students and colleagues, sit on committees, and perform community service, McKinlay says. It is essential that you learn to balance all these duties while also protecting your time, he adds.

Today, he always tries to help students and be a good colleague. But as McKinlay has become more established—he was promoted to associate professor in July—he has learned to be more selective in the tasks he accepts, for example only agreeing to review papers that he is really interested in. Saying “no” is difficult, but he knew that to continue contributing in the long term, he needed to secure tenure first.

Part of adjusting his workload and schedule also involved adjusting his own expectations of himself. “You can let aspects of the job, be it teaching or research or service, take as much of you as you let it,” he says. “It’s really forced me to recognize my limits … and to try to work within them.”

This mindset has proved important not just for McKinlay’s professional success and satisfaction, but also for his personal happiness. In addition to making sure he has time for work and his family, “I realized that I need to also dedicate time for myself, otherwise it’s not healthy … and it’s not fun for anybody.”

Skills and knowledge gained from relevant work experience — and not credentials — are what will open doors and create opportunities for graduate degree holders, write Jennifer Polk and L. Maren Wood.

Jennifer Polk and L. Maren Wood

Taken from https://www.insidehighered.com/advice/2018/02/14/how-phd-students-can-find-jobs-outside-academe-appropriate-their-discipline

We hear this question a lot from graduate students, postdocs and other recent Ph.D.s. They ask it because they are looking for a list of industries, organizations or job titles that suit their education and training. When it comes to work beyond the professoriate, we have no list of job titles or companies that we can point to and say, “Here’s where [insert discipline here] Ph.D.s are wanted.” You have to find your own opportunity, and it could be in any number of different areas.

A Ph.D. is a required credential to secure work as an assistant professor at many institutions of higher education. And there are highly specialized careers for STEM Ph.D.s, where doctoral-level technical and subject matter expertise is required. The same isn’t true of other jobs: a great many Ph.D.s go on to careers where the degree itself does not matter. What matters most to employers is whether a candidate can do the work they need done.

Employers evaluate candidates with a wide variety of work experiences and educational backgrounds during the hiring process. Through earning a Ph.D., running a lab, teaching university-level courses, participating in institutional committees, organizing conferences and applying for grants and awards, academics develop a broad skill set. That skill set includes strong writing, research and analytical chops that are rooted in academic disciplines. Depending on your field, you may develop technical or process knowledge that nonacademic employers need. Think of the social scientists businesses recruit to work as data scientists or UX designers, for example.

But the Ph.D. in and of itself rarely matters. Skills and knowledge gained from relevant work experience — and not credentials — are what will open doors and create opportunities for graduate degree holders.

Note that when we say “knowledge,” we don’t necessarily mean academic subject matter expertise. For many Ph.D.s, their scholarship does not directly relate to their nonfaculty career. Ryan Raver works as a product manager at a pharmaceutical company. He leverages his knowledge of biomedical science when communicating with scientists, marketers and vendors, but he seldom uses his academic expertise on his job. Keriann McGoogan does not draw on her dissertation research topic (lemurs) while at work at Pearson Canada. She does call upon her experience with academic writing, research and university-level teaching in her job as an acquisitions editor.

Both Raver and McGoogan found that they needed to supplement the skills and knowledge they developed while earning their Ph.D.s before they could successfully transition to work beyond the professoriate. While in graduate school, Raver took business courses and ran a small business so that he had a solid understanding of management practices to combine with his science background. McGoogan took night courses to learn about the publishing industry and then worked as an intern before landing her first paid position in publishing.

Raver and McGoogan leveraged their experience to help them land meaningful, rewarding jobs after their Ph.D.s. But here’s a key point: they did not secure those positions because of their graduate education. To build a successful, meaningful career beyond the professoriate, every Ph.D. must learn how to leverage their own distinct combination of knowledge, skills and abilities. While there is no long list of “Ph.D. jobs,” a very long list of jobs is held by individuals who happen to have Ph.D.s.

The good news is that there are many places where you can leverage your education. Speaking to Ph.D.s who work outside academe can help you learn what your skills are, where they are in demand and how to effectively communicate your value to potential employers.

Here are two useful questions you can ask yourself instead of “What can I do with my Ph.D. in my specific discipline?”

What Energizes Me About the Work I’m Doing Now?

Often when academics answer this question, they say, “I love teaching!” or “I am passionate about [insert subfield here].” That’s fine, but when it comes to leveraging your experience for work beyond the professoriate, think deeper. What is it you love most about teaching? One of us, Maren, loved teaching, but the aspects of teaching she found most engaging and rewarding were mentoring others and helping them achieve their goals. Those are interests shared by people who are successful managers, coaches, consultants and more.

Maren loved public speaking and delivering workshops during her Ph.D. studies and later as an instructor. Now working outside a university, she still speaks and presents, only to a different audience about different topics. Public speaking is a skill that is transferable to a wide range of employment contexts.

Maybe it isn’t your academic work that is energizing. What are you doing when you’re feeling most energized or successful? Is it volunteering at a nonprofit? Doing your own podcast? Think about what it is you’re excited to be doing. Follow that.

The other of us, Jen, co-hosted a podcast and was a music blogger for a few years during her doctorate — activities she found highly engaging. While on campus, she most enjoyed running tutorials, which usually involved facilitating discussions among small groups of students. And she loved doing archival research and discovering answers to questions. It is thus not shocking that her postacademic career includes a significant amount of public engagement (blogging, Twitter), facilitating panel discussions, and individual and group coaching. Another history Ph.D. might hate this work, but for Jen, it’s awesome.

Now think about the parts of academic work you find least energizing. For Maren, those tasks included grading. She does not want to edit other people’s work. Jen isn’t interested in academic publishing. Tasks that drag you down are those that you want to avoid as much as possible in your next role. So for our work together now, Jen edits our writing while Maren conducts research.

What Are My Skills and Competencies, and What Will Employers Pay Me to Do?

You won’t be paid to do everything you love, and that’s OK. You can find other ways to engage your passions and interests. Rather than thinking of yourself as a historian, literary scholar or chemist, think about your key skills and core competencies. A key skill might be public speaking; the related core competency is oral communication. We recommend reading Robin Kessler and Linda Strasburg’s Competency-Based Resumesto become familiar with competencies versus skills.

Make a list of the things you do in the day, from answering student emails to editing your friend’s footnotes. Do this for a couple of weeks, and you’ll see you do quite a bit. That will help you reimagine yourself as a professional with skills in addition to being a scholar with deep subject-matter expertise. Then, organize the things you do into clusters of skills and competencies. Cross out all the things you hate doing and highlight the ones that energize you.

Next, learn about organizations and industries in the city where you live or want to live.

Read organization websites. Use LinkedIn to find employees that work there and review the skills and competencies they highlight in their profiles. Read job advertisements posted by companies of interest. Don’t worry about applying for these jobs — you’re just doing research at this stage.

Then, reread your list. What skills do you have that employers want? What is your value to them? How can your skills and abilities help an organization be more successful?

Although your Ph.D. won’t necessarily open doors for you, many industries need people with your skill set. Seek out companies of interest, speak to people who have jobs that sound interesting, ask for help. Reach out to Ph.D.s who are working in nonfaculty careers and ask them for advice in making the transition. Check out our career panels to get started.

Organizations across industries and sectors are looking for talented individuals, and Ph.D.s have skills that are in demand. But, again, it’s these skills, not the credential, that matter. In other words, it’s you, and not your degree, that will be of interest to employers. So figure out who you are as a professional and then build a list of jobs, organizations and industries that match your skills and interests.

Graduate students from The Scripps Research Institute share how they prepared to enter policy, law, biotech, and beyond.

By Anna Kriebs

Over the last month, I have been on a quest: To find out how those of us scientists searching for jobs outside academia were faring and if my own experience in looking beyond the ivory tower was an outlier or a representative measurement. As I was preparing to leave The Scripps Research Institute (TSRI), where I had been a graduate student for the past five years, I wanted to understand why transitioning into a non-academic career could feel like taking the road less traveled, when it is, in fact, the path of most graduate students at TSRI and elsewhere.

Trained in biochemistry, I focused my graduate research on understanding time-of-day dependent metabolic fluctuations. Post-graduation, I was looking for a career that would draw on my experience but allow me to delve into a broader range of scientific discoveries. Thus, I became interested in science communication. In my current job search I am ruling out post-doctoral training.

Non-academic positions require applicants to pair their scientific knowledge and competence acquired during academic training with additional skills. Naturally, different non-academic career paths demand vastly different qualifications, the only commonality being the need to plan ahead. For instance, my former classmate Alex Krois, who earned his PhD in a structural biology lab, intends to work as a biotech-IP lawyer. He spent three months prepping for the Law School Admission Test (in addition to full-time lab work). He now studies at UC Berkeley School of Law on a scholarship.

The more inclusive that science is as a community and the more people we can call scientists, the more progress we will see.—Anne Kornahrens,
AAAS Science and Technology Policy Fellow

Our colleague Anne Kornahrens performed her graduate work in synthetic organic chemistry. I reached her in Washington, DC, where she is now a AAAS Science and Technology Policy fellow. Anne says she had to precisely time her defense to enable an elaborate 10-month application process. She also joined organizations outside of TSRI’s campus to practice outreach and STEM education, which ultimately became her policy focus.

In my informal survey of fellow students, it became clear that another important form of preparation for the non-academic world is connecting with the fields they wanted to enter in advance. This was pointed out by my colleague Bryan Martin, a protein biochemist and NMR spectroscopist, who is one of many transitioning into industry research. To make these connections he conducted informational interviews with former colleagues who have acquired positions in the biotech sector. This is a great way to gather information about the job and how they got it and to propagate a professional network.

My former classmate Rebecca Miller, who performed her graduate studies in structural biology and now works for a company developing plant-based protein—in a marriage of her passion for biophysics and a desire to act on climate change—even volunteered with industry conference organizers. Running the conference registration desk put her in a prime position for making acquaintances in the field she wanted to enter.

To create opportunities to connect with professionals and explore different careers, TSRI’s Career and Postdoctoral Services Office (CPSO) organizes on-site company visits, career panels, meet-the-alumni, and other networking events. “We also recently launched a career exploration pilot program at TSRI that allows students and postdocs to visit employers to gain real-world experience working on representative projects,” says Ryan Wheeler, the director of career, international, and postdoctoral services. “Each visit lasts just one or two days and aims to increase trainees’ knowledge about a specific career path and company culture.” These efforts continue to foster interactions between the academic and other scientific communities and are crucial in making the full range of careers suitable for PhDs more accessible. I highly recommend stepping into your local Career Services Office to find out about the programs they offer.

How to decide which career path to choose? The students I spoke to were driven by finding the best fit for their interests, skills, and values, often exploring several options at first. Completing an Individual Development Plan, an online tool that matches the results of a personal assessment exercise with possible career trajectories, is a great starting-off point in this process. Additionally, many of us took advantage of CPSO’s one-on-one advising appointments. In a personalized manner, CPSO connected us with alumni who had gone down the same path, pointed out resources and ways to demonstrate specific skills (a.k.a. building a resume), and provided feed-back on application packages.

Finding small ways to try a different career on for size helped me ascertain I was moving in the right direction. For instance, the first step I took was to volunteer with the TSRI Council of Scientific Editors. Helping others express their scientific ideas and goals in research manuscripts and fellowship or grant applications gave me a heightened sense of contributing to overall scientific progress.

I am excited to contribute to driving science forward in the role that best fits my talents and passions, and so are the students I spoke to. As Anne notes from her new vantage point in DC, “the more inclusive that science is as a community and the more people we can call scientists, the more progress we will see.”

Anna Kriebs is a graduate student at The Scripps Research Institute in La Jolla, California.

Posted November 17, 2017 by anitageorge in Early Career Research Community

Shortcuts to Scientific Success


Researchers can often refer to at least one inspiring person or event that has instigated their academic endeavors. As a marine biologist, I have been interested in shell collection from beaches since I was 3 years old and I have always wondered what lies underneath the ocean. Eventually, I got inspired by famous scientists like Marie CurieBrahmaguptaFrancis Crick, and Carolus-Linnaeus whose major inventions in science prompted me to study zoology and biotechnology. Based on my own personal experience from shell-collector to marine biologist, I found that curiosity and dreams can play a more vital role than motivation from others, and studies now show that creativity can play a vital role in one’s scientific career. To improve creativity and vision, I would therefore like to share some simple shortcuts that I believe can facilitate scientific success.


In order to achieve what you want in science (and life in general), it is important to be able to visualize your goal  and how to get there in detail. After my PhD in the taxonomy of marine sponges, if someone asked me about my life goal, I would say, “to be a marine scientist.” It did not take much time to understand that “marine scientist” is a vast term where you can jump into various career options like research fellow, lecturer, consultant, science communicator, conservationist, ecologist, biologist, etc. Many of us struggle to answer the “career goals” question. If we are not focused and specific on what we need, it will certainly be difficult to reach the right substratum.  Apparently, the best time for visualization is after you wake up in the morning and before going to bed, spending at least for 5 to 10 minutes envisioning your goals.

Cultivate Selective Ignorance

Learning the art of selective ignorance is the next important step. I used to spend a lot of time reading and watching the news, but I found that  it took my valuable time away from my work. As Herbert Simon rightly said, “Abundant wealth of information creates poverty of attention.” Sometimes, we tend to read one thing and then get distracted and continue reading one article after another. Instead, when you cultivate selective ignorance, and choose your priorities, it will open a lot of your own creative possibilities that you may never see otherwise. So, to develop selective ignorance, first it is important to have a clutter-free work space. Mess creates stress and disorder creates distraction. It is one of the reasons why Steve Jobs started his Apple products and his workspace in ‘White’ as he wanted clarity in thinking. Going on a ‘low information diet’ while at your lab or workplace may help us channel our thoughts for clarity of thinking and productive work.

Reach the Right Mentor

Mentors are important in any career not only for knowledge and skill transference, but to provide professional and personal support. Working with an incompatible supervisor for you is like getting on the wrong train and finding that every stop is not what you expected. If you are aware that you are on the wrong train, get off at the next station and find the right one–the supervisor that is perfect for you. You can do this by seeking out mentors in your professional community. For example, one day during lunch with one of our museum entomologists, I asked if she had any tips for a conference presentation. Without hesitation, she gave some wonderful tips. When I confirmed if the acronym for an excellent presentation is K.I.S.S. (Keep It Short and Simple), with a big smile she responded that nowadays to grab the attention of any audience, it is better to ‘Keep it Short and Stupid’ and yes, it worked. At the recent sponge conference, my presentation grabbed some attention as I didn’t give any detailed or crowded slides.

Be Positive

Staying positive can make a big difference to our productivity. Though we cannot avoid negative people around us, we need to be aware that we cannot allow ourselves to waste time on envisioning a pessimistic future awaiting us. Sometimes the negativity can start from home or school or workplace. You may be surrounded by doubters, critics and disbelievers. However, if your passion and dreams are stronger, you can convince your parents, teachers and friends to transform their thoughts. In India, where I was born, trends in the 1990s suggested that information technology was the ideal profession for woman to have a secured job. However, I stayed optimistic that my passion in science would lead to a good career. What lies inside you is always more important than what surrounds you.

Believe in Yourself. 

Finally, whatever happens, don’t ever stop believing in yourself. As suggested in all the above four tips, thoughts are one of the most powerful catalysts to trigger our life’s happenings. To achieve what you “really” want in life and to overcome self-sabotage instead of leading to concentration, mindfulness and success, try to get some anti-procrastinating apps and start doing the impossible things you fear the most. In my case, marine research was not considered as an appropriate profession for women in India, which has varied cultures and subterranean thoughts that women should have some ‘imaginary’ limitations in the society. When I chose a marine profession with diving (I’m a rescue diver now!), none of my parents, professors, or friends discouraged me or criticized me for staying in this adventurous and fun-filled career. The reason is that I never allowed myself to be impacted by the opinions of others. My community knew that my passion and belief in myself was more powerful than negativity around me. As Thomas Alva Edison said, “If we all did the things we can do, we would literally astound ourselves.” Let success be yours!

Featured Image: Prelude To A Successful Career In Cultural Production  belonging to the flickr account of Aitor Calero  licensed under CC BY 2.0)


Agassi, A. (2009). Open, An Autobiography. Knopf, 388pp.

Medina, J. (May 20, 2008). Brain rules for powerpoint & keynote presenters.

Evans, D. Five anti-procrastination apps you need to know about.

Ferriss, T. (2007). The four-hour work week. Crown publishing group, 308pp.

A & E Television networks. (2017). Francis Crick Biography.com website.

The Economist. (March 20, 2009). Herbert Simon.

Isaacson, W. (2011). Steve Jobs, 656pp. Simon & Schuster

Kondo, M. (2014). The life changing magic of tidying up.

Mastin, L. (2010). Indian Mathematics – Brahmagupta, The story of Mathematics.

Müller-Wille, S. (October 20, 2017). Carolus Linnaeus, Encyclopædia Britannica, Encyclopædia Britannica, inc.

Rashid, B. (May 2, 2017). 3 Reasons All Great Leaders have Mentors (And Mentees), Forbes.

Oleynick VC, Thrash TM, LeFew MC, Moldovan EG and Kieffaber PD (2014) The scientific study of inspiration in the creative process: challenges and opportunities. Frontiers in Human Neuroscience 8:436. doi: 10.3389/fnhum.2014.00436

Rockwell, S. (2003). The life and legacy of Marie Curie. Yale Journal of Biology and Medicine, 76(4-6): 167–180.

Singh, R. (1998). Status of Women in Indian Society, Human Rights, Trustees of Boston University,

Brainwave Power Music. When is the best time for visualize?


Written by Arunodoy Sur, Ph.D.

A postdoc was not for me.

I knew this well before graduating.

I simply did not want to pursue a tenure track position.

Too many postdocs and assistant professors I knew were too miserable for me to ever want to be one of them.

I wanted to explore options for alternative careers instead but my University provided me with no resources for doing so.

It was very surprising to see how little the University knew about transitioning into non-academic careers.

It was also surprising to see how limited the University’s network was outside of academia.

To make matters worse, I was an international student.

As such, immigration laws required me to be formally employed in less than 90 days from my graduation.

Three months is not a lot of time to find a job.  

I did not have the luxury of spending half a year on a job search after graduation, let alone taking a break for a few months and then starting my job search.

To get more information about career options, I started asking other science PhDs and postdoctoral researchers about their career plans.

Many of these students and postdocs said they were also interested in an industry career.

But, oddly enough, they had chosen to only apply for postdoc positions.


A Postdoc Is Not Your Only Career Option

Most PhDs transition into an academic postdoc, even when they would rather transition into an industry position, because they believe a postdoc is their only option.

Their academic advisor and the entire academic system has led them to believe this is their only option.

What does this mean?

It means the reason most PhDs do not get PhD jobs in industry is because they lack the information they need to get these jobs.

They also lack information on which non-academic career options are available to them and which of these positions fit their goals and lifestyle.

If you’re a PhD or postdoc, it’s crucial for you to understand all the opportunities you have in front of you.

You need to gain in depth knowledge of all the career tracks available to you, not just one or two.

You should also pay close attention to changing trends, making sure to note which job sectors are rising and which are falling.

Science Related Jobs | Cheeky Scientist | Alternative Careers For Scientists
10 Top Non-Academic Jobs Alternative For STEM PhDs

Gain a thorough understanding of your career options.

Otherwise, you will be forced by circumstances to take a position that is not in alignment with your long-term career goals.

To avoid this fate, we’ve collated a list of the top 10 hottest non-academic jobs.

Understanding which industry positions are on the rise will help you see what’s available to you outside of a traditional postdoc or professorship.

There are many alternative career options available to STEM PhDs.

It will also help you make an intelligent decision on which positions you would enjoy and which you may not enjoy.

When choosing the next step in your career, be sure to consider not only the title and salary you want to have, but the lifestyle you want to live.

Don’t make the mistake of chasing something that will ultimately make you miserable.

This is how many PhDs ended up in poor and unhappy postdoc positions in the first place.

Here are 10 top non-academic careers for PhDs to consider applying to…

1. Market Research Analyst

Marker Research Analyst roles exist in most industries, but they are especially significant in innovation-based sectors such as electronics, IT or biotechnology.

According to the Bureau of Labor Statistics this profession is projected to experience a job growth of 20% from 2004 to 2014.

Market research analysts are expected to gain a complete understanding of the commercial landscape associated with a specific technology or sector.

A PhD’s ability to analyze large amounts of information and identify comparative advantages between two technologies is very valuable to this role.

As a Market Research Analyst, your responsibilities include gaining information about commercialization opportunities as well as evaluating the key advantages and disadvantages of your products versus competitor products.

You will apply this information and your technical expertise to create reports that outline key niches for commercialization, estimate market size, identify current major players in the sector and recognize prospective future competitors.

Your reports will act as essential tools that administrative teams will use to plan an ideal commercialization path, thereby avoiding pitfalls and maximizing revenues. 

Since Market Research Analysts provide key market information and collaborate with strategic decision-maker, this role can open up doors to higher management positions.

As innovation based industries grow and continue to globalize, there will be an increasing demand for science PhDs in Market Research roles.

2. Business Development Manager

A recent career survey by CNN Money found that Business Development Managers, or BDMs, ranked in the top 100 careers worldwide with a projected growth rate of 16.4%.

The name of this role might suggest that it’s only for professionals with a business degree.

But, nowadays, science PhDs are being increasingly hired as BDMs.  

This is because many PhDs excel at understanding complex technologies, which is crucial to technology-based sectors such as biotechnology, software, consumer electronics, and pharmaceuticals.

A BDM’s key responsibilities include developing new business opportunities, managing existing products, developing market strategies, and building new business partnerships.

As a BDM, you will have to prioritize innovative products based on market needs and competitor positioning.

Thorough knowledge of not only a company’s technology, but its culture and products is key to this role.

BDMs are required to use a combination of scientific knowledge, analytical skills and market trends to forecast things like revenues, profits, and losses.

Your presentation and teaching skills are also valuable to this position because BDMs are expected to present to management and marketing teams regularly.

3. Competitive Intelligence Analyst

Competitive Intelligence (CI) Analysts main role is to gather information about products that are in a competing company’s pipeline and analyzing these products to determine how they will affect the market.

A Global Intelligence Alliance survey of global software, healthcare, pharmaceutical, financial, energy and manufacturing found that the hiring of CI analysts will increase dramatically in the coming years, with 60% of hiring managers reporting that they are actively looking for candidates.

As a CI Analyst, you will turn information about your competition into actionable intelligence for your company.

You will be required to gather information from key opinion leaders (KOLs), intelligence databases, scientific conferences and online resources.

These inputs will be used to determine both threats or opportunities in the market.

CI Analysts play a critical role in supporting a company’s management team in making strategic marketing decisions.

PhDs have already have many of the skills required for this role, including strong scientific and technical knowledge, strong information gathering skills, and the ability to analyze large data sets.

CI Analyst positions often act as a gateway to higher executive positions as these Analysts already contribute to a company’s executive decision-making.

CI Analyst positions are abundant in not only technology-based companies, but also inn specialized CI firms that are dedicated to offering CI services to a wide range of clients.

4. Product Manager

Product Managers (PMs) are responsible for managing the entire life-cycle of an innovative product.

They oversee the development of a product and the management of product after it launches.

An employment survey conducted between 2012 and 2013 found that the demand for Product Managers in technology-based sectors is increasing by 23% annually.

PMs are responsible for analyzing a product’s market performance as well as determining ways to boost a product’s commercial success while simultaneously determining how to phase out or terminate older versions of the product.

PM roles are multifunctional and demand collaboration spread across multiple divisions of an organization.

As a PM, you must be able to quickly identify market needs, communicate those needs with your marketing team, and find innovative solutions for these needs.

You must also possess a unique blend of business acumen and creativity. Successful PMs are able to envision new products and clearly understand the competitive landscape of their market.

PM roles are available for PhDs in most technology-based sectors, including electronics, aeronautics, IT and software, and of course, biotechnology and pharmaceutical sectors.

5. Management Consulting

Ten years ago, most consulting firms only employed MBAs.

Things have changed.

Thanks to the steady rise of technology-based business sectors, there has been a significant increase in the number of science PhDs being hired by these firms.

According to a Bloomberg Business report, the consulting market is expected to experience an overall annual growth rate of 3.7%.

The same report stated that the management consulting market recently grew by 8.5% to a total value of $39.3 billion.

STEM PhDs are in high demand for consulting positions because they have a strong technical background and are specifically trained troubleshooting difficult problems.

Many PhDs fail to pursue Management Consulting positions because they believe that these positions require extensive industry experience. This is not true.

Even the most reputed global consulting firms have specialized job opportunities for PhDs.

As a Management Consultant, you will be required to leverage your problem solving skills. You will also be required to design unique strategies for overcoming these problems.

Management consultants must be able to work in collaborative “teamwork” environments where communication and leadership skills are crucial.

You must be able to present your findings both orally in PowerPoint presentations and in written form through detailed reports.

A key advantage of securing a Management Consultant position is that it will open doors for a variety of opportunities including executive management, venture capitalism, and entrepreneurship.

6. Quantitative Analyst

There are many opportunities for science PhDs to transition into Quantitative Analyst (QAs).

Most of QA positions are available in major financial institutions involved in financial trading.

A report by Recruiter showed that over the last 10 years, employment opportunities for QAs in the U.S. have grown by 29%.

A similar report based on U.S. labor statistics showed QA positions will grow by 20% through 2018.

QA responsibilities include quantitative data analysis, financial research, statistical modeling, and pattern recognition—all related to predicting trades.

Science PhD with backgrounds in “quant” related disciplines such as Mathematics, Statistics, Physics, Engineering, and Computer Science are highly sought after for these positions.

However, many Life Science PhDs are also being hired as QAs. This is due to increases in financial trading in the biotechnology industry.

Science PhDs continue to be preferred by QA firms because of their proven ability to conduct independent research and their detailed understanding of the scientific aspects of technology-based sectors.

As a QA, you will be expected to have a strong scientific background and to be able to work under pressure with little supervision.

You will also be required to gain deep financial knowledge of your markets and be able to grasp advanced mathematical concepts quickly.

7. Medical Communication Specialist

Medical Communication Specialists are broadly described as technical writers involved in the development and production of communication medical and healthcare related materials.

A Bureau of Labor Statistics report shows that Medical Communication Specialist positions are expected to grow by 15% between now and 2022.

As a Medical Communication Specialist, your responsibilities will include writing and editing materials that healthcare organizations will use to communicate with patients, clients and medical professionals.

You must be able to organize, edit, and present information in a manner appropriate for your target audience.

Medical Communication Specialists must also possess excellent written communication skills and have a strong understanding of the ethical or regulatory guidelines in their field.

The main reason for this is that Medical Communication Specialists often work to produce a variety of documents, including patient education brochures, Web content, physician articles, sales training materials and regulatory documents.

8. Healthcare Information Technology Specialist

In 2009, the US government enacted the Health Information Technology for Economic and Clinical Health Act (HITECH Act).

According to this new government initiative, there is a massive push for adoption of healthcare technology by healthcare providers.

One of the major criteria of this act is to convert all healthcare related data into an electronic format.

This has made the role of Healthcare Information Technology (HIT) Specialist one of the fastest growing jobs.

A recent HIT Specialist related survey reported that there were a total of 434,282 HIT-related job postings between 2007 and 2011.

As a HIT Specialist, you will be responsible for organizing patients’ medical record into electronic databases, verifying patients’ medical charts, and communicating with physicians to ensure the accuracy of their diagnoses.

Science PhDs who are trained in Life Science fields and have experience with online databases such as Genomics and Bioinformatics are highly sought after for this position.

You must have a strong background in medical research as well as medical terminology.

You must also be willing to learn about medical coding, information technology, clinical database management, and medical billing.

Hospitals, ambulatory healthcare services, clinical research centers, academic research institutions, and health insurance providers are the main sources of employment for HIT Specialists.

9. Operations Research Analyst

Operations Research Analysts are responsible for investigating complex issues, identifying and solving operational problems and facilitating a more cost-effective and efficient functioning of an organization.

In short, these Analysts are very high-level problem solvers. Their job is to systemize organizations as efficiently and effectively as possible.

Operations Research Analysts were first implemented by the military a few decades ago but now they are used in almost every sector.

The demand of this role has increased investments in big data analytics platforms.

Job reports show that Operations Research Analyst positions are estimated to grow by 27% per year until 2022, making it one of the hottest jobs of the next decade.

As an Operations Research Analyst, you must be able to use data mining techniques, mathematical modeling, and statistical analyses to provide real-time operational guidance to large biotechnology and biopharmaceutical companies.

STEM PhDs with academic training in Mathematics, Statistics, Computational Modeling, and Data Mining are highly sought after for these positions.

Although a bachelor’s degree is often mentioned as the minimum qualification in Operations Research Analyst job postings, graduate degree holders are heavily favored.

10. Medical Science Liaison

Becoming a Medical Science Liaison (MSL) is a rapidly growing opportunity for STEM PhDs.

A recent McKinsey & Company report found that MSL roles will continue to increase rapidly through 2020. The same report also showed that advanced degree holders with a strong scientific background will be hired more and more for these roles.

A international recruiting survey found that MSL positions have increased by over 38% and is one of the fastest growing, science-related jobs in the world.

MSL positions can be found in a variety of healthcare-based sectors including pharmaceutical, biotechnology, medical device sectors.

The biggest misconception regarding MSL positions is that it is a sales position. This is not true.

In reality, MSLs act as scientifically trained field personnel who are considered to be part of a company’s medical staff. Most MSLs are not even allowed to discuss drug prices or conduct sales.

This provides MSLs with more freedom to learn and teach. As a result, they gain a deeper knowledge of therapeutic areas and are able to discuss detailed medical and scientific issues with physicians.

As an MSL, one of your key responsibilities is to build rapport with KOLs in various therapeutic research areas.

You must have extensive clinical or medical knowledge and, at the same time, be a “people-person.”

Strong communication skills are important but you must also be able to work independently and travel extensively.

Twenty years ago, MSLs were selected from experienced sales representatives that had strong scientific backgrounds. This has changed. Now, PhDs with relevant scientific knowledge are often hired.

Currently PhDs with medical knowledge have a significant advantage in finding employment.

However, MSL positions are highly competitive with only 1-2% of applicants getting hired.

You can make yourself a more competitive candidate for these positions by first taking a Clinical Research Associate (CRA) position.

A PhD combined with CRA experience is considered by industry experts as the best way to prepare yourself for an MSL position.

The two most important lessons you will learn by searching for an alternative career is that there are several jobs available to you and other PhDs outside of academia. You do not have to do a postdoc or continue doing a postdoc. The key is that you must work to change your situation. In order to secure your ideal industry position, you must prepare yourself by gathering as much information about alternative career options for science graduates as possible. You must also begin to grow your non-academic network. Only then will you be able to transition into the non-academic career of your choice.

To learn more about transitioning into industry, including instant access to our exclusive training videos, case studies, industry insider documents, transition plan, and private online network, get on the wait list for the Cheeky Scientist Association. 

We all have a unique story of how we got to where we are now – the path is rarely straight and narrow. A recent article in Science by Wei Ji Ma highlights the often hidden struggles we all face. In the article, he discusses his co-founding of an event series that focuses on discussing common challenges while working in science.

The Stories Behind a CV