The benefits of offering support to someone else.

 

 https://www.insidehighered.com/blogs/gradhacker/mentoring-graduate-student
Heather VanMouwerik is a Ph.D. candidate in Russian History at the University of California, Riverside. Find her on Twitter or read more on her website.
—————————————————-

Honestly, I had no intention of becoming anyone’s mentor. I was deep into the “make it work” stage of my academic career: my dissertation was stagnating, I was teaching a new course in a new discipline, my partner had gotten a job across the country, and I was having health problems.

Nevertheless, despite my being lost in the fog of graduate school, an undergraduate found me and turned me into a mentor. And I am thankful every day that she did.

Oddly enough, I was never even C’s teacher; she was never my student. I was an intern archivist, she was a student assistant, and we shared a basement workroom in the library. Chatting to keep our minds occupied while processing a collection and keep our bodies from freezing, we became good friends over a mutual interest in history, archival management, and Ryan Gosling memes.

In many ways C is like a better-prepared version of myself. She is pursuing a degree in history, loves digital humanities, and wants to work in a library or museum. Already in her fourth year, she has a clarity of purpose and knows what she wants from life—things I still sometimes struggle to put together.

Although she had the broad strokes of her academic career outlined, she was missing some of the finer details. She just needed some nuts-and-bolts type information about being a public historian. Answers to questions like:

What sort of topics make good research projects

How do you find a valuable internship?

What do you do in library school?

What jobs can a history major do?

What is the best way to write a grant proposal that will be funded?

All things in which I am expert!

There are a lot of ways that mentorship benefits undergraduates and even first-year graduate students. People with mentors, for example, are more likely to matriculate, have higher grades, and feel more included in their university, which are all markers for academic success. Mentorship in this case, however, isn’t superficial. It requires a long-term commitment with frequent meetings, emails, and check-ins—a truly active can professional interest in the success of your mentee.

In modern universities, especially in large research institutions, this sort of deep commitment is nearly impossible to give to an individual student, let alone an entire class. Being a mentor is not a job requirement and adds strain to an already tight schedule. Moreover, many of the benefits to the instructor are intangible, meaning they do not result in a new line on your CV.

Yet, I argue that it is important, especially for graduate students, to take on an undergraduate mentee or first-year graduate student. Even if it is just one; even if it is for a short period of time. Setting aside all of the benefits to undergrads and any altruistic rationales, being a mentor will improve your sense of well-being, your overall graduate school experience, and professional satisfaction.

In my experience, mentorship helps graduate students in four ways:

Fight impostor syndrome. While I helped C piece together her awesome future—from discussing possible careers to line editing an occasional statement-of-purpose—she was also helping me see my own value as a scholar. I might feel like an impostor when I am writing my dissertation or talking at conferences, but C never saw me that way. Instead, she saw me as an expert in my field (which I am), a resourceful research assistant (yup), and a fluent speaker of academic-ese (oh, yes). Working with a student one-on-one allows you to put your knowledge to good use and the rest of academia into perspective. You are no impostor, and a mentee will prove that to you.

Deepen your community. Even the most anti-social amongst us spends graduate school putting together a network of people, one which consists of professors, advisors, other scholars in our field, peers, classmates, friends, students, and helpful administrators. In fact, graduate school could not happen without this community. Every person we interact with enriches it, especially when that person is a mentee. Mentorship requires you to build a different type of relationship than any other in your network. It is informal and familiar while still being professional and, to a certain extent, hierarchical. No syllabi or grading, just coffee, advice, and dialogue.

Articulate yourself. One of the most unexpected benefits I gained from working with C was the ability to better articulate what I do. When she asked questions, I had to think about not only the answer to those questions, but also the best way to make that information accessible to her. This involved many discussions about framing arguments, for example, and selling research to grant committees. Mentorship is great practice for everything from writing a teaching philosophy to perfecting your elevator pitch, since the stakes are low and there is no search committee to impress. It is just a mentor and her mentee chatting about school, careers, and life.

Doing good while making friends. Being a mentor takes a lot of time and mental energy—a point that I do not want to understate—but the results far surpass anything you put into it. Motivation, however, to help a student in this way must come from within, since it will not appear on an evaluation or performance review. Like donating to a charity or contributing to the Creative Commons, helping C made me feel good. I was doing something worthwhile, something with long-term meaning. Likewise, it sets you up to be a fantastic graduate and undergraduate mentor in the future. Also, she became my friend, which was its own reward.

Over the summer C participated in a prestigious digital history internship on the east coast, and she is currently doing university-funded research into the exploitation of Guatemalan women by American scientists in the 1950s. Trust me, I brag about her all of the time! Although she has done all of the hard work, I can’t help but feel proud of her achievements.

From my position as a late-career graduate student, I recommend you find someone who needs some advice. Schedule an informal meeting, buy them a cup of coffee, or send them an email. If you take some time to get to know a student and teach them something outside of the classroom, then you might just be surprised what they have to teach you about being a graduate student in return.

Samantha Yammine uses Instagram to share her research and enthusiasm for science

The power of science communication

Samantha Yammine is a PhD candidate in her final year at the University of Toronto in Dr. Derek van der Kooy’s Neurobiology Research Group. She is also a science communicator.

Although science communication manifests in different ways, at its very core it’s about explaining science-related topics and research to non-experts. Scientists generally do this by stripping their research of jargon and voicing their message in ways that can be easily understood by the general public.

Yammine started out in science communication by writing tweets for the Ontario Institute of Regenerative Medicine during the second year of her PhD studies. Since then, Yammine has moved her passion for science outreach to her Instagram account, science.sam.

According to Robert A. Logan in his article “Science Mass Communication,” science communication started out in print during the first 30 years of the twentieth century in the US. Some scientists sought to educate the public about science to make rational public affairs decisions and improve the quality of their lives through science policy, public affairs, and public opinion.

The purpose of science communication hasn’t changed much since.

Yammine explained to The Varsity that by communicating her research through various social media platforms, she hopes to pique her audience’s interest in science.

“We talked a lot about policy and science policy and why communication is important so that we can have a positive impact on science policy in Canada,” said Yammine at the Science Writers and Communicators of Canada conference she attended two weeks ago in Ottawa.

At the conference, Yammine and fellow science communicators discussed the role that social media plays in this field. With the rise of Twitter and Instagram, science communicators and journalists have had to keep up with social media’s pace and influence.

Yammine regularly posts on her Instagram account, which has over 9,600 followers, and she has shared over 240 posts. She takes around 40 pictures a day, and only one or two will make it onto her Instagram. She shares pictures of brain stem cells, laboratory equipment, and different science events around Toronto. Last month, she covered the Dunlap Institute’s coverage of the solar eclipse and shared photos from the event.

“I picture my lab mates reading and I also picture my sister reading who is not in science,” said Yammine when explaining her process of posting content.

Instagram is her social media outlet of choice because she is able to share both photos of her in the lab and of her doing normal things like going out to dinner. “If people aren’t going to listen to science, it’s because the people talking about it… might not relate to them or think that they’re trustworthy,” said Yammine.

As a teaching assistant, Yammine noted that the classroom may be an intimidating setting for many students. “I think that communication needs to be taught more in science… It is a skill to learn, and I think science undervalues quality of writing to its detriment.”

Yammine stressed that learning how to communicate through writing will be useful, especially for students considering graduate school, where they will eventually author publications and write grants. “Even in a lab report, your intro has a point — you’re introducing the topic that you’re studying.”

In fact, she recommended that students learn to write concisely by using Twitter or Instagram, whose character limits force students to summarize their findings in short sentences.

Science communication has been a rewarding experience for Yammine so far. Her favorite part is receiving messages from students who tell her they are motivated by her posts. She also loves seeing posts from other young women who are inspired to pursue science.

“If you value science, and you want to combat pseudoscience and fake news, put your engagement, your clicks, your likes, your comments where your values are,” she said.

Chris Woolston, Nature 549, 553–555 (28 September 2017) doi:10.1038/nj7673-553a

http://www.nature.com/nature/journal/v549/n7673/full/nj7673-553a.html

Choosing a lab of the right size is crucial for early-career development.

Getty

Group discussions are one aspect of postdoc life that can be very different between large and small labs.

While looking for a postdoctoral position, Michael Mitchell could have joined any number of small, intimate labs with a couple of colleagues and an ever-present lab leader. Instead, he decided to go big. In 2014, after earning a PhD in biomedical engineering, he accepted an offer from Robert Langer, also a biomedical engineer, at the Massachusetts Institute of Technology (MIT) in Cambridge. Mitchell shares the lab with some 40 other postdocs, a host of graduate students and a rotating cast of visiting researchers. The sheer scale of the enterprise becomes clear every summer, when the lab gathers for an annual party at Langer’s beach house. “Bob has to rent three to four buses to get us down to the house,” Mitchell says. “He gets an entire ice-cream truck for dessert.”

Of all the factors that potential postdocs must consider when choosing a position, lab size should be near the top of their list: it can shape a junior researcher’s career. Scientists say that small labs may be isolating, but that members tend to have great access to the lab leader. Conversely, whereas trainees in larger labs may have less time face-to-face with their mentor, some data suggest that they have more chances to collaborate and publish.

Those considering a postdoc position should think carefully about what would suit them. “It’s quite a personal choice,” says Kerstin Kinkelin, the training and career-development project manager at the Francis Crick Institute in London. “There’s no general rule about which is better or worse, but people need to think about which lab size works for them personally.”

A large lab was the right choice for Mitchell. “I knew Bob’s lab would have the resources to allow me to pursue the range of research ideas that I’m interested in,” he says. “But I was also looking for an excellent mentor. I would have worked for Bob even if I was the only one there.”

Publishing paradox

The size of a lab may affect the quantity and types of paper a postdoc publishes. Mitchell notes that postdocs on a large team might have a chance to make small contributions to the many projects run by other members of the lab. This could lead to a slew of undesirable middle-author papers. “In a large lab, you want to be very focused on your own research project,” Mitchell says. “It’s more important to get first-author publications that you can take ownership for. Ultimately you’re going to be judged on your independent work.”

Lab size can also affect the likelihood of a postdoc publishing high-profile papers, says Christopher Liu, a former biochemist who studies strategic management at the University of Toronto in Canada. In an unpublished study of 91 biology labs at MIT, Liu found that larger labs tend to publish more articles in top-tier journals. Specifically, adding one person to an average-sized lab of 11 members increases the impact score of publications by 1.5%. In other words, Liu says, postdocs could increase their chances of getting published in journals such as NatureScience or Cell by joining a large lab.

“Large labs hit more home runs, but they also get fewer at-bats.”

The data also suggest an important caveat: adding a postdoc to an average-sized lab reduces the number of publications per person. That means that postdocs who join a large lab could risk slightly decreasing the quantity, although not necessarily the quality, of papers published by lab members — themselves included. “Large labs hit more home runs,” says Liu, “but they also get fewer at-bats.” In a similar vein, a 2015 study of UK biology labs found that publications per person decrease as lab size increases (I. Cook et alPeerJ 3e9892015).

Valuable mentorship

Liu sees an obvious explanation for the relative lack of efficiency in large labs. Every postdoc who decides to join the team automatically dilutes the amount of time that the principal investigator (PI) can spend with each lab member. He adds that even though postdocs tend to be more independent than graduate students, time with a PI is still a valuable commodity.

Even the best postdocs need at least occasional guidance from their lab leader, agrees Ann Miller, a molecular biologist at the University of Michigan in Ann Arbor. “In a smaller lab, you’re going to get more attention from your PI,” she says. “And that PI is going to have a more vested interest in your success.”

Miller runs a lab with just one postdoc and a couple of graduate students. Even with such a small group, she takes mentorship seriously — she won the 2017 Exceptional Mentor of the Year award from the university’s Office of Graduate and Postdoctoral Studies. Because she doesn’t have a large team, she ensures that each new member will fit. She’s particularly selective about postdocs and hired her first in 2013, two years after she started her lab. “In a small lab, each postdoc is chosen very carefully to fit with the science and the lab culture,” she says. “I interviewed several other people but I was looking for just the right person.”

That first postdoc, Tomohito Higashi, accepted a faculty job at the Fukushima Medical University in Japan this year. He says that more time with Miller significantly helped his career. “I had research discussions and casual conversations with her almost every day.”

David Smith, a molecular evolutionary biologist who shares a single postdoc with another lab at the University of Western Ontario in London, Canada, would caution any prospective postdoc about the possible downsides of joining a large group. “I know faculty members who did their postdocs in labs that were so large that the PI wouldn’t even write reference letters,” he says. Such labs can sometimes breed a culture in which postdocs battle one another for resources, for the attention of the PI and for authorship on papers. “A lot of people don’t thrive in that environment. It depends how well they can handle the competition, the drive and the tempo.”

Survive and thrive

Many postdocs rise above the challenge of life in a large lab. Mitchell is one example. Early next year, he will move to a new job as an assistant professor at the University of Pennsylvania in Philadelphia. He has also earned recognition for his work, winning a 2016 Burroughs Wellcome Fund Career Award at the Scientific Interface, a US$500,000 prize given to researchers combining biology and engineering.

Mitchell says that he owes much of his success to the size of the Langer team. “If I read about an exciting technique and want to do it but don’t know how, I can knock on a door down the hall and find someone who does,” he says. “We can have coffee, talk about an idea — and we’re doing an experiment that night in the lab.” He adds that one high-profile paper on which he was first author — about using polymer nanoparticles to enhance the effects of immunotherapeutics on tumour cells (M. J. Mitchell et alNature Commun. 8141792017) — was sparked by a conversation over coffee with a colleague.

Mitchell says that the lab doesn’t breed cut-throat competition, partly because Langer emphasizes teamwork and carefully evaluates applicants to make sure they can fit with the rest of the lab. “It’s like a faculty interview,” Mitchell says. “The potential postdoc comes in for two days, meets with other scientists and postdocs, and gives an hour-long seminar. Bob gets a lot of feedback from people throughout the lab.” And unlike some leaders of large labs, Langer makes himself available to his students and staff. “Bob is notorious for responding to questions from postdocs or graduate students over e-mail within minutes,” Mitchell says.

Suzanne Tainter/MCDB/Univ. Michigan

Ann Miller (centre) carefully selects postdocs to ensure that they are a good fit in her small lab.

Alessandra Breschi, a geneticist and bioinformatician who just completed a postdoc in the large lab of Roderic Guigó Serra at the Centre for Genomic Regulation in Barcelona, Spain, says that working in a lab with some 30 other people forced her to be more independent. “You have to learn to find information on your own,” she says. Breschi spoke to Nature shortly before starting her new postdoctoral position in the lab of Michael Snyder at Stanford University in California, where there are already around 40 postdocs. She hopes that her large-lab experience will serve her well.

Likewise, Amelie Baud, a neurobehavioural postdoc at the European Bioinformatics Institute in Hinxton, UK, has found success in the rapidly growing lab of Oliver Stegle. When she first joined the lab in 2013, she shared it with just two other people: a PhD student and a master’s student. “Joining a tiny group is potentially risky,” she says. “I like the idea of an average-sized group that has a critical mass at lab meetings. You can get feedback on presentations and organize journal clubs.”

The Stegle lab now includes eight postdocs, along with several graduate students and visiting scientists. “It’s a large lab even for this area of study,” Baud says. “As the lab grew, I never noticed a change in atmosphere. The lab is dynamic, and there’s a lot going on, but I haven’t heard about competition in the group, and I don’t think it exists.” As the lab expanded, Baud thrived. In 2014, she won a £250,000 (US$332,000) four-year Sir Henry Wellcome postdoctoral fellowship.

Liu’s analysis of MIT labs suggests that top-tier postdocs tend to excel no matter the lab size. In that sample, postdocs who had won fellowships — a marker for excellence — didn’t hamper efficiency when they joined a lab. The data, according to Liu, suggest that outstanding postdocs don’t necessarily need to worry about staying productive in a large lab. But for postdocs who aren’t superstars, large labs have clear dangers. “If you feel that you would benefit from more attention from the PI, maybe you should consider a smaller lab,” he says.

Real-world training

In addition to more interaction with the PI, smaller labs might also provide realistic training for a career in academia, Miller says. “Some of my friends who come out of large, highly funded labs were used to having a lot of technical support and money for anything,” she says. “When you start your own lab, it can be a bit of a shocker.”

Smith has seen similar consequences in Canada. “Students and scientists who have been in big labs their whole careers can have a skewed view of academics,” he says. “Reality isn’t massive research teams and Nature papers and million-dollar grants.”

Miller completed her postdoc in a small lab at the University of Wisconsin–Madison. Without a technician or other postdocs, she had to learn every detail about managing a lab, from writing animal-care protocols to mixing reagents. Because of this, she didn’t stumble when it was time to start her own lab. “I was ready to go,” she says. She also didn’t have to compete with other postdocs to give talks at meetings, review papers or join key projects. “All of these things are good for your career development and visibility in the field,” she says.

Looking ahead, Miller says that she would eventually like to have two or three postdocs and several graduate students — a lab that falls between the extremes of size. “That’s kind of reaching my capacity for being fully invested,” she says.

Postdocs can find success in labs of any size, says Kinkelin. They need only to decide if they want to stand out in a small group or find their own space in a larger one. Either way can work — especially if postdocs are aware of the potential trade-offs ahead of time. “People have to think about what they want to get out of it.”

Author information

  1. Chris Woolston is a freelance writer in Billings, Montana.

NICOLE SHARP, PH.D., , UCS | JULY 24, 2017, 9:21 AM EDT
http://blog.ucsusa.org/science-blogger/why-communicate-science

First, a confession: I never meant to be a science communicator.

I’m an aerospace engineer specializing in fluid dynamics, the physics of how liquids and gases (and granular materials and pretty much anything that’s not a solid) moves. As an undergraduate, I fell in love with the subject in part because of the incredible photos my professors used to help us see and understand how fluids behave. As a PhD student, I was frustrated by how little information there was online for the public to learn about this subject that impacts our daily lives.

From that frustration, my website FYFD was born as a place where I could share the beauty of my subject with the world at large.

Like many scientists, I began communicating science for selfless and altruistic reasons. But along the way, I learned there’s a lot to be gained for the communicator as well. So I’d like to share a few of the selfish reasons to communicate science.

The first one may seem a bit obvious, but engaging in science communication is a great way to hone your communication skills. Whatever path your career leads you down, those skills are key. Communicating science to the public, whether online or through local means, is generally a low-risk operation, but it’s an opportunity to practice and improve your skills so that when it really matters you can nail that job interview or research proposal.

Participating in science communication regularly is also a great way to develop expertise in your subject area. When I started writing FYFD, it seemed like spending part of every day reading journal articles that had nothing to do with my research might be a waste of time. After all, learning the latest on how droplets splash was not going to help my work on high-speed aerodynamics. But toward the end of my PhD—after a few years of writing FYFD—I noticed that when professors and other students had questions that reached beyond our own area, the first resource they turned to was not Google Scholar—it was me.

The first time a professor asked me if I knew anything about the unexpected behavior they were seeing in an experiment, it was a revelation for me. I had unwittingly turned myself into an expert, not simply on the subject of my own research but on fluid dynamics in general. That broad familiarity with the field continues to be valuable today. It allows me to see connections between disparate studies and subjects, a skill that’s key to discovering new avenues for research.

If you choose to use science communication to raise awareness of your own work, it can help you gain exposure. A recent study showed that social media use can help increase a scholar’s scientific impact. It can also help you gain the notice of journalists, and there is evidence that media coverageof papers leads to more citations. Personally, my science communication efforts have almost exclusively highlighted the work of other researchers, but I have nevertheless benefited in terms of networking and new opportunities within my field.

Of course, setting up a Twitter account or a blog is no guarantee that you’ll start seeing your papers in The New York Times. Fortunately, that kind of audience isn’t necessary to see some personal benefits. One of my favorite aspects of science communication—especially in-person—is witnessing a positive-feedback loop of enthusiasm. When you’re genuinely excited about a subject, whether it’s fluid dynamics or unionid bivalves, that enthusiasm impacts your audience and can get them excited. Seeing that excitement in others simply reinforces your own enthusiasm.

Maintaining that reserve of enthusiasm for your subject is vital for motivating yourself when things are going poorly. As an experimentalist in graduate school, I faced a series of setbacks in my research, including spending half of the last year of my PhD rebuilding lab infrastructure instead of gathering data. We all periodically face moments when we ask ourselves: why the heck am I doing this? For me, spending a part of every day searching for a piece of my subject to share with the world was a chance to remind myself of what I love about fluid dynamics. Communicating science is an opportunity to see your field anew and renew your motivation to carry on in spite of the daily frustrations.

As you can see, there’s a lot to be gained, both personally and professionally, from engaging in science communication. If you’d like some resources or guidance on how to begin, UCS is a great place to start. AAAS also offers resources for scientists and your professional society may as well. For guidance to better online science communication, I recommend Science Blogging.

Good luck and remember to have fun!

Nicole Sharp is the creator and editor of FYFD, a fluid dynamics blog with a quarter of a million followers that has been featured by Wired magazine, The New York Times, The Guardian, Science, and others. Nicole earned her M.S. in aerospace engineering from Cornell University and her Ph.D. from Texas A&M University with experiments on the effects of surface roughness on airflow near a surface moving at Mach 6. She currently lives in Denver, Colorado, where she enjoys hiking, cycling, and skiing. You can find her online at @fyfluiddynamics or nicolesharp.com.